
Designing Good Semi-structured DatabasesSin Yeung Lee1 Mong Li Lee1 Tok Wang Ling1 Leonid A. Kalinichenko21 School of Computing 2 Institute for Problems of InformaticsNational University of Singapore Russian Academy of Sciencesfjlee, leeml, lingtwg@comp.nus.edu.sg leonidk@synth.ipi.ac.ruAbstract. Semi-structured data has become prevalent with the growthof the Internet and other on-line information repositories. Many orga-nizational databases are presented on the web as semi-structured data.Designing a \good" semi-structured database is increasingly crucial toprevent data redundancy, inconsistency and updating anomalies. In thispaper, we de�ne a semi-structured schema graph and identify the var-ious anomalies that may occur in the graph. A normal form for semi-structured schema graph, S3-NF, is proposed. We present two approachesto design S3-NF database, namely, restructuring by decomposition andthe ER approach. The �rst approach consists of a set of rules to decom-pose a semi-structured schema graph into S3-NF. The second approachuses the ER model to remove anomalies at the semantic level.1 IntroductionThe growth of the Internet and other on-line information repositories has greatlysimpli�ed the access to numerous sources of information/data, especially throughthe World Wide Web. The data is presented in various forms: At one extremewe �nd data coming from traditional relational/object-oriented databases, witha completely known structure. At the other extreme we have data which isfully unstructured, eg images, sounds and raw text. But most of the data fallsomewhere in between (semi-structured) for a variety of reasons: the data maybe structured, but the structure is not known to the user; the user may knowthe structure, but chooses to ignore it for browsing purposes. Examples of semi-structured data include HTML documents where the structure is imposed bytags, and bibliography �les where some structure is imposed by �elds such asthe author and the title to an otherwise unstructured text �le. Note that thetags and �elds are optional.The nature of semi-structured data is fundamentally di�erent from data intraditional databases and hence raises many new issues. Some of the commonscenarios involve extracting data from the diverse information repositories acrossthe Internet, and integrating the data from heterogeneous sources. These tasksare made more di�cult because we have only a partial knowledge of the structureand that the structure is potentially "deeply nested" or even cyclic. Many re-searchers have proposed semi-structured data models, databases, and languagesto model, store and query the WorldWide Web data [1, 5, 7, 18, 15]. These worksuse some graph or tree models [5, 18] which provide a
exible representation of

data coming from arbitrary heterogenous sources. Proposed query languages areclosely tied to these data models.Unfortunately, there is no notion of a precise or explicit schema in all thesesemi-structured databases. All the schematic information is embedded in thegraphs which may change dynamically. The lack of a schema poses two problems.First, it is di�cult for a user to formulate a meaningful query on the semi-structured data without any knowledge of how the data is organized. Second, itis di�cult for the query processor to generate e�cient plans for queries on thesemi-structured data without any schema to guide it. As a result, [8] introducesDataGuides which dynamically generate and maintain structural summaries ofsemi-structured databases. The Dataguides are used in the Lore DBMS [15] forthe user to carry out structure browsing and query formulation, as well as forthe query processor to optimize query execution. More work to discover schemasfrom semi-structured data can be found in [21, 16, 4] and others.However, to date, we observe that the concept of a well-formed or a nor-mal form semi-structured schema has never been considered. This has come toour attention because data redundancy and data inconsistency may occur in asemi-structured database if the schema is not designed properly. In a traditionaldatabase, redundancy has inevitably caused updating anomalies [6]. A well-established technique to remove undesirable updating anomalies and data redun-dancy from relations and nested relations is normalization [13, 20, 14, 17, 19, 12].In this paper, we will focus on how to design good semi-structured databases.We assume that we can extract the schema from a semi-structured data sourceor database. We will de�ne the concept of a semi-structured schema graph andinvestigate the various anomalies that may appear in this model. A normal formfor semi-structured schema graph, S3-NF, is proposed. Our normal form notonly deals with functional dependencies and multivalued dependencies, but alsoremoves identi�ed anomalies from the semi-structured schema graph. Two ap-proaches to designing S3-NF databases are given, namely, the restructuring ap-proach and the Entity-Relationship (ER) approach. The former consists of a setof rules to decompose a semi- structured schema graph into S3-NF while the lat-ter uses the ER model to remove the anomalies and redundancies at the seman-tic level. We envisage the growing importance of well designed semi-structureddatabases due to the increasing popularity of XML for data representation onthe Web [3].The rest of the paper is organized as follows. Section 2 gives the de�nitions ofvarious concepts in a semi-structured schema graph. The anomalies that may oc-cur in the graph is also presented. In section 3, a normal form for semi-structuredschema graph, S3-NF, is de�ned. We also show how we can restructure a semi-structured schema graph to obtain S3-NF which does not have the undesirableanomalies. Section 4 discusses the ER approach to designing a S3-NF database.Finally, we conclude in Section 5.

2 Semi-Structured Graph: De�nition and AnomaliesData modeling people have long noticed the fact that if the database attributesare �xed in structure, the modeling power of the data model is greatly reduced.With the introduction of XML, semi-structured data model becomes widespread.However, the problem of anomalies, which was well solved for various relationalmodels, including the
at relation model [2, 11] and the nested relation model[12], will appear again. In this section, we de�ne the concept of Semi-StructuredSchema Graph and discuss various anomalies that may appear in this model.2.1 Motivating ExampleWe use the Object Exchange Model (OEM) [18] adopted in Stanford's LoreDBMS [15] to represent semi-structured data. OEM is self-describing as eachobject contains its own schema and there is no distinction between schema anddata. Each object in OEM has an object identi�er (oid) and a value. The valueis either atomic, (integer, real, string, gif, html, audio, etc) or complex, thatis, a set of object references denoted as a set of (label, oid) pairs. The labelsare taken from the atomic type string. We can visualize OEM as a labeledgraph in which vertices correspond to objects and edges represent the object-subobject relationship. Each edge has a label describing the precise nature ofthe relationship. Based on the OEM, Lorel [1] uses the familiar select-from-wheresyntax and path expressions to traverse the semi-structured data. For example,the path expression Student.Course speci�es the Course subobjects of objectStudent.
&10 &11 &12 &13

Student

&2

&1
Name

Course
&3

&5 &6 &7 &8

"John"

Code Title Grade
Tutor Tutor

&9

&4

Course

"CS101" 89"Java"

Code Title Grade Tutor

Name Office
Feedback

&14 &15 &16

"Tan" 8

Name
Office

&17 &18

"Lim"

"IT321" "Database" "A"

&21 &22 &23

Name Feedback

10

Office

"Tan"
&19

Office

"S15 04-26"

&20

9

Feedback

Building Room

&24 &25

Building Room

&28 &29

"S16" "05-13" "S16" "05-13"

Building Room

"S17" "03-18"

&26 &27Fig. 1. Example of an OEM graph

Student

#2

#1
Name

#3

#4 #5 #6

string string/integerstring

Course*

string

TitleCode Grade

#8 #9 #10

string integer

Building Room

string string

#11 #12

#7

Tutor*

Name Office*
FeedbackFig. 2. Schema of Figure 1Figure 1 shows an example of an OEM graph. A student (with attributeName) can be enrolled in many courses (with attributes Code and Title). Thestudent's grade for a course is kept in the attribute Grade. A tutor, with at-tributes Name and O�ce, can teach more than one course. A student can havemore than one tutor for a course. The student's evaluation of a course tutoris kept in the attribute Feedback. There is no �xed or regular structure in thegraph1. a student may take zero, one or more courses2. a course may have one or more tutors3. a tutor may have one or more o�ces4. a student's course grade may be in marks (0-100) or in grades (A to F)5. a tutor's o�ce is a complex structure consisting of building and roomThe associated schema is shown in Figure 2.The semi-structured database in Figure 1 is not well-designed because itcontains data redundancy. The code and title of a course will be stored as manytimes as the number of students taking the course. Similarly, information of atutor such as his/her o�ce and age will also be duplicated since a tutor canteach more than one course and more than one student. Such data redundanciescan be removed if we have links, denoted by dashed edges, to Course and Tutorobjects as shown in Figure 3. The associated schema is shown in Figure 4.2.2 De�nition of Semi-Structured Schema Graph (S3-Graph)De�nition1. A Semi-Structured Schema Graph (S3-Graph) is a directed graphde�ned as follows,

89

&7

Name

"A"

&12

&23

Feedback

10

&8’’

Student

&2

&1
Name

"John"
&4’

Course
Course

Code

&4

&10 &11

"IT321" "Database"

Title

&3

&5

"CS101" "Java"

&6

Code Title

Course

Course

Course

Course

&3’

Grade

&8
&9

Name Office

"Tan"

Feedback

8

&16

Office

&17 &18

"Lim"

&20

Feedback

9

&8’ &9’

&15&14

Tutor Tutor

Tutor

Tutor

&19

Office

"S15 04-26"

Tutor

Tutor

Grade

Tutor

Tutor

Building Room

"S16" "05-13"

&24 &25 Building Room

"S17" "03-18"

&26 &27Fig. 3. A Well-Designed Semi-Structured Database
#8 #9

string

#11 #12
string string

Name

#2
string

#7’

Feedback

#10

integer

Grade

#6

string/integer

Tutor

Student

#1
Name

Course
Office*

Building
Room

Tutor

#3

#4 #5

Code Title

string string

Course

#3’

Course

#7

TutorFig. 4. Schema of the Well-Designed Semi-Structured Database in Figure 3

Each node of the graph can be classi�ed into one of the following types:1. entity node is a node which represents an entity. This entity can be of basicatomic data type such as string, date or complex object type such as student.If the entity node represents a basic atomic data type instead of a complexobject type, then the entity node is also known as leaf entity node. Intuitively,a leaf node does not have any child (de�ned later) in the S3-Graph. Wefurther attach the atomic data type as a label to the corresponding leafentity node in the S3-Graph.2. reference node is a node which references to another entity node.Each directed edge in the graph is associated with a tag. The tag representsthe relationship between the source node and the destination node. The tag maybe su�xed with a *". The interpretations of tag and the su�x depend on thetype of edge. There are three types of edges:1. Component EdgeA node V1 is connected to another node V2 via a component edge with a tagT if V2 is a component of V1. We represent this edge by a solid arrow line. IfT is su�xed with a *", the relationship is interpreted as \The entity typerepresented by V1 has many T". Otherwise, the relationship is interpretedas \The entity type represented by V1 has at most one T".2. Referencing EdgeA node V1 is connected to another node V2 via a referencing edge if V1 refer-ences the entity represented by node V2. We represent this edge by a dashedarrow line. In this case, the relationship is interpreted as \V1 references V2".3. Root EdgeA node V1 is pointed by a root edge with a tag T if the entity type representedby V1 is owned by the database. We represent this edge by a solid arrow linewithout any source node for the edge. The tag T is not su�xed. In thiscase, the edge is interpreted as \The database has many T". Furthermore,we shall call V1 as a root node in the S3-Graph.Finally, some roles R can be associated with a node V if there is a directed(component or referencing) edge pointing to V with tag R after removing anysu�x *".Example 1. In Figure 4, node #1 represents an entity node, which represents theentity STUDENT. This is also one of the root nodes. This node is associated withthe role \Student". Node #2 is another entity node of which database instanceholds a string representing the NAME of a student. It is associated with the role\Name". It is also a leaf node associated the atomic data type \string". Henceany \NAME" data is of string type. The directed edge between node #1 andnode #2 represents \Each STUDENT has at most one NAME".Node #3' is a reference node. It references the entity node which representsCOURSE. In this case, #3' represents the same entity as in #3. The edge con-necting #1 and #3' is interpreted as \Each STUDENT has many COURSEs".

Note that in a more complex example, a node can be associated with morethan two roles. For example, a PERSON can be both a LAB-MEMBER as wellas a LAB-SUPERVISOR.De�nition2. Given a S3-Graph G, if a node P of role RP is connected viaa component edge to another node C of role RC, then RP is referred to as astrongly connected parent of RC, and RC as a strongly connected child of RP .Similarly, if there is a path of only component edges which connects a nodeA of role RA to a node D of role RD, then RA is said to be a strongly connectedancestor of RD. If RA is a strongly connected ancestor of RD, then RD is oneof the strongly connected descendants of RA.Example 2. Refer to Figure 4, Student is a strongly connected parent of Tutor,and O�ce is a strongly connected descendent of Tutor. However, O�ce is nota strongly connected descendent of Student because any path that connects anode of Student role to a node of O�ce role must go through a referencing edgebetween node #7 and node #7'.In the above example, we see that strongly connected ancestor is not neces-sarily transitive. In fact, the strongly connected parent resembles to the physicalparents of the hierarchical database models such as IMS. In this case, the logicalparents is realized through our referencing edges.For the rest of the paper, we shall refer strongly connected ancestor simplyas ancestor. Likewise, we shall refer strongly connected descendent, stronglyconnected parent and strongly connected child as descendent, parent and childrespectively.2.3 Anomalies of Semi-Structured DataA database in a RDBMS can be considered as a special form of semi-structureddata. In general, semi-structured data involves anomalies which are similar tothose identi�ed for 1NF relations. Before we illustrate the various anomalies, wewill �rst de�ne the database instance { a semi-structured data graph, which isan image of a given schema.De�nition3. A semi-structured data graph D with respect to a S3-Graph G isa graph showing a database instance such that1. (Node correspondance)Each node v in D is associated with one and only one node V of role R in G.We call V in the schema the de�nition node of the data node v. Furthermore,v is playing the role R.2. (Edge correspondance)A component edge inD is represented by a solid arrow line. If v1 is connectedto v2 via a component edge e with tag T , then their de�nition nodes in Gmust be likewise connected via a component edge E with tag T , with orwithout the su�x *". We call the edge E in G the de�nition edge of the

edge e in D. Likewise for the referencing edge which is represented by adashed arrow line.3. (Root correspondance)For each node v, there must be another node w whose de�nition node isa root node in G, such that either v is w itself or v is connected to w viacomponent edges.4. (Data type correspondance)Each node v whose de�nition node is a leaf entity node V with data typeType in G must be associated with a data of the matching data type Type.5. (Cardinal correspondance)For each compononent edge e with tag T connecting u to v, if the tag associ-ated with e's de�nition edge is not su�xed with *", then u cannot connectto another node w with the same tag T .Furthermore, v1 in D is an ancestor of v2 in D if the de�nition node of v1is an ancestor of the de�nition node of v2. The de�nition of descendant, parentand child can be de�ned similarily.Finally, we say that the semi-structured data graph D is an image of G.Figure 1 is a semi-structured data graph which is an image of the S3-Graphin Figure 2. This design is not a good design because many anomalies occurs. Forexample, each tutor has one name, but this information may appear many timesin a semi-structured data graph as each tutor may teach many students. Forexample, the name \Tan" is repeated twice in the semi-structured data graph inFigure 1. Now, we encounter some anomalies. If a female tutor needs to changeher surname after marriage, we must make sure that all the appearances of thisinformation are consistent. This is the rewriting anomaly. Similarly, if thecourse is not mounted, the information about the tutor may be deleted togetherwith its parent. This is the deletion anomaly.Note that due to the
exibility of semi-structured data, there is no insertionanomaly. To insert a tutor and his name, it is possible to insert a new tree thatindicates the above information.In a semi-structured data graph, an object instance can be connected tomultiple occurrences of objects of the same role. This introduces other types ofanomalies that do not happen in relation in RDBMS that permits only atomic-valued attributes. One of the anomalies can be illustrated as follows.Refer to Figure 1 again, a tutor can have a set of o�ces. Since a tutor mayappear more than once in the graph, the information \Tan has an o�ce at S1605-13", which is independent of the Student and Course the tutor teaches, isrepeated twice in the graph. This introduces anomaly.We refer to such anomalyas set anomaly.

3 A Normal Form for Semi-Structured Schema Graph(S3-NF)In order to remove the anomalies that may exist in a given semi-structured data,we de�ne a normal form for it. In this section, the concept of SS-dependencyand this new normal form, called S3-NF, is described.3.1 SS-DependencyDe�nition4. Given a S3-Graph G, and let A =� A1; � � � ; Am � be a sequenceof roles in G. The sequence A is called hierarchical role sequence if Ai is anancestor of Aj whenever j > i.De�nition5. Given a S3-graph G, and a semi-structured data graph D whichis an image of G. Let A = � A1; � � � ; Am � be an hierarchical role sequence inG such that Ai is an ancestor of Aj whenever j > i. An instance of A wrt G inD is a sequence of nodes, � a1; � � � ; am � in D such that ai is of role Ai and aiis the ancestor of aj whenever j > i.De�nition6. Given a S3-graph G, and a semi-structured data graph D whichis an image of G, let e = � a1; � � � ; am � and e0 = � a01; � � � ; a0m � be twoinstances in D of an hierarchical role sequence A = � A1; � � � ; Am � in G, eagrees e0 if and only if for every corresponding node ai in e and a0i in e0, we have1. If ai and a0i are atomic data, then they have the same value.2. If ai and a0i are objects, then they represent the same object. 13. If ai and a0i are references to another objects, then the two object instancesreferenced by ai and a0i are the same object.Example 3. Refer to Figure 3, the instance � &80 � agrees with the instance� &800 �. as both of them reference the same object represented in &8. Onthe other hand, the instance � &3;&5 � does not agree with the instance� &4;&10� as their course codes are di�erent.De�nition7. With respect to a S3-Graph G, for a hierarchical role sequence� A1; � � � ; Am �, where Ai is an ancestor of Aj whenever i < j, and a singleentity type B where B is a descendent of Am, we have A1; � � � ; Am SS-determinesB, denoted asA1; � � � ; Am =) Bif in any semi-structured data graph D which is an image of G, wheneverany two di�erent instances e1 and e2 of A in D agree, it implies that the set ofinstances in D of role B having e1 as an ancestor is the same as that of havinge2 as an ancestor.1 Deciding if two objects are the same depends on the underlying database model. Ingeneral, it can be decided by at least two ways: same key value, and same object-id.

Example 4. Refer to the S3-Graph in Figure 2, we have Tutor =) Office. Theset of o�ces that a tutor has solely dependent on the tutor, and is not dependenton the courses he/she teaches, nor the students he/she has. This SS-dependencycan be illustrated by one of its images as shown in Figure 1: The two instances\� &8 �" and \� &13 �" agree as they represent the same tutor \Tan".Their o�ce data also agree as they both hold the same value \S16 05-13".On the other hand, Tutor 6=) Feedback. Refer to Figure 1, although theinstance \� &8�" agrees with \� &13�", their descendent instances of roleFeedback, \� &16 �" and \� &23 �", do not agree. For this database, thecorrect SS-dependency should be Student; Course; Tutor =) Feedback.Theorem1. Let G be a S3-Graph, A and B be two hierarchical role sequencessuch that any of the roles of A is an ancestor of each role in B, We have thefollowing properties for SS-dependency:1. (re
exivity) For any A, A =) A.2. (generalization of functional dependency) if A �! B, then A =) B.3. (left augmentation) Let C be a role that is an ancestor of each role in B andA =) B, then AC =) B where AC represents the hierarchical role sequencecontaining all the roles in A and C,4. (right augmentation) Let C be a role that is a descendent of each role in Band A =) B, then A =) BC. where BC represents the hierarchical rolesequence containing all the roles in B and C,5. (transitivity) For any three hierarchical role sequences A;B;C, if A =) Band B =) C, then A =) C.Proof: The proof of these properties follows directly from the de�nitions ofSS-dependency and functional dependency.De�nition8. Let A and B be two hierarchical role sequences, If there exists ahierarchical role sequence C such thatA =) B andB =) C andB 6�! Athen we say that C is transitively SS-dependent on A via B.Example 5. Refer to Figure 2, Code, are transitively SS-dependent on Studentvia Course sinceStudent =) CourseCourse =) CodeCourse 6�! StudentTheorem2. Given a S3-Graph G, if a role C in G is transitively SS-dependenton another role A via role B, then there exists a semi-structured data graph Dwhich is an image of G such that the rewriting anomaly occurs upon updatingthe data of role C.Proof: We can build a semi-structured data graph as follows,

1. We �rst construct two instances a1 and a2 of role A such that they do notagree.2. we construct the descendents of a1 and a2 such that they are of role B andrepresent an identical object. Since B 6�! A, it does not contradict the as-sumption that a1 and a2 does not agree.3. Since B =) C, for the set of descendents of b1 which plays the role C, itmust be the same as the set of descendents of b2 with the role C.We have now constructed a semi-structured data graph. If we update theinformation of C under b1, it can cause inconsistency unless updating is alsodone at the same time to the information of C under b2.Hence, there is a semi-structured data graph D, which is an image of thegiven S3-Graph G, such that the rewriting anomaly occurs when we update C.3.2 S3-NF and decomposition of a S3-GraphDe�nition9. A S3-Graph G is said to be in S3-NF if there is no transitiveSS-dependency in the graph.In order to restructure a S3-graph to reduce redundancy, we need to removeany transitive SS-dependency in a given S3-Graph. If this can be done, then theschema will be in S3-NF. In this paper, we adopt the decomposition approach toremove transitive dependencies. However, as in the case of relational database,decomposition approach by no means ensures a good solution. Integrity con-straint information can be lost during the decomposition. Indeed, as mentionedin [12], it is not always possible to remove every transitive dependency in a nestedrelation solely by decomposition. As semi-structured data is even more
exiblethan nested relation, our decomposition method can only transform the schemato reduce redundancy, but may not always remove all transitive dependenciesand achieve S3-NF. In future research, we will purpose another synthesis methodsimilar to Bernstein [2] and Ling's [11] method to generate a S3-NF scheme andat the same time, guarantee that no constraint information is lost.The basic operation of our restructuring is to introduce new reference nodesand decompose the given schema graph. The main goal is to remove transitiveSS-dependency in the graph. This can be done by the following step:Given a S3-Graph G, we can decompose it to to reduce redundancy.1. For each role B, if there does not exist a role set A such that(a) A =) B and(b) B 6�! A,skip the rest of the following steps and continue to check for another role.2. Let Cj be the set of the children of B such that(a) B =) Cj,(b) for every descendent of Cj which is of role D, we have B =) D.If there is no such Cj, then skip the rest of the following steps and continueto check for another entity type.

3. (Graph decomposition) Otherwise, duplicate the node V which has the roleB to form a new node V 0. It will be the root of a new tree. Move each of theCj and all the descendents of Cj and their corresponding edges under V 0.Now, replace the original node V by a reference node. This reference nodeshall reference V 0. The tag of the referencing edge will be B.Example 6. Refer to the schema represented in the S3-Graph in Figure 2, wewant to restructure the schema to reduce redundancies.1. We �rst inspect the role Student. Since there is no other role A such thatA =) Student, no redundancy will be caused by the Student role.2. The next role is Name. We have Student =) Name, but Name has nodescendent. Our algorithm skips this role and checks for other roles.3. For the role Course, we have Student =) Course. Consider the node #3 inFigure 2, it has four children: #4, #5, #6 and #7. For #4 which representsCode, since Course =) Code, hence, Code is one of the Cj. Similarly, T itleis another Cj as Course =) T itle. Note that Grade and Tutor are not inCj as Course 6=) Grade and Course 6=) Tutor. We now decompose thisgraph. The subtree Course; Code and T itle are disconnected from Student.The original node #3 is renamed as #3'. It now becomes a reference nodewhich references the entity node Course (node #3).4. Similarly, when we inspect the role Tutor, we �nd out that(a) We have Student; Course =) Tutor, but Tutor 6�! Student; Course.(b) As Tutor =) Tutor:Name, Tutor:Name is one of the Cj which cancause anomaly.(c) Office is also in Cj as �rstly, Tutor =) Office, Furthermore, for thetwo children of Office: Building and Room, our algorithm needs toverify that the set of Room and Building that a tutor has can be solelydependent on Tutor only, and does not require extra information suchas Course and Student.(d) Finally, Feedback is not one of the Cj since Tutor 6=) Feedback.Another decomposition is done to duplicate node #7.5. No other remaining role requires further decomposition. Our restructuringstep stops.The �nal restructured S3-Graph is shown in Figure 4. It is also in S3-NF.4 ER Approach to Semi-Structured Database DesignThe task of designing \good" semi-structured database can be made easier ifwe have more semantics. [9] proposed a normal form for the ER model. Usingthis ER normal form, [10] can give a good design for nested relations. Using thisidea, we can also make use of the ER normal form to design good semi-structureddatabase. This top-down approach [10], which consists of normalizing an ER dia-gram and converting a normalized ER diagram into the semi-structured databasehas two advantages:

1. Normalizing an ER diagram e�ectively removes ambiguities, anomalies andredundancies at a semantic level.2. Converting a normalized ER diagram into semi-structured database resultsin a database schema with clean semantics.In this section, we will discuss brei
y how we can use the ER approach to designgood semi-structured databases.The ER approach uses the concepts of entity types and relationship sets tocapture real world semantics. An entity type or relationship set has attributeswhich represents its structural properties. Attributes can be single-valued or mul-tivalued. Figure 5 shows the ER diagram for our Student-Course-Tutor example.We see that students, courses and tutors are modeled as entity types Student,Course and Tutor respectively. Student has an attribute Name while Coursehas attributes Code and Title. Tutor has a single-valued attribute Name anda composite multivalued attribute O�ce. Here, we assume that Student.Name,Course.Code and Tutor.Name are the identi�ers of the entity types Student,Course and Tutor respectively. The relationship set Enrol captures the associ-ation that a student is enrolled in a course and has a single-valued attributeGrade. Since a student taking a course is taught by some tutors, we need toassociate the relationship set Enrol with the entity type Tutor. This is accom-plished using aggregation which e�ectively allows us to view Enrol as an entitytype for the purpose of participation in other relationship sets. This associationis captured in the relationship set SCT. Feedback is a single-valued attribute inSCT as its value is given by the student for each tutor teaching him in somecourse. It is clear that the ER diagram is also in normal form [9].
Name

Student Course

Tutor

Name Title

Building Room

Office

Grade

Feedback

Code

Enrol

SCTFig. 5. Entity-Relationship Diagram for Student-Course-Tutor ExampleWe now outline the translation of the normal form ER diagram into a S3-graph. Details of the translation algorithm will be given in a full paper.1. Each entity type E becomes an entity node N with role E. Each attribute Aof E is a node which is connected to E by a component edge with tag A.

2. For each n-ary relationship set R, we �rst construct a path to link the par-ticipating entity types of R. Let � V1; V2; � � � ; Vk � be the path. Vertex V1corresponds to some participating entity type of R which is associated withsome entity node N1. Each vertex Vi, where 2 � i � n, corresponds to eithera participating entity type of R or a combination of two or more participatingentity types of R. We next create reference nodes N2; � � � ; Nk that is associ-ated with V2; � � � ; Vk respectively. Then we have a component edge from Nito Ni+1, where 1 � i � k � 1. Each reference node Ni, where 2 � i � k,also has referencing edge(s) to the entity node(s) that is associated with theparticipating entity type(s) of R corresponding to Vi. Any attribute A of Ris a node which is connected to Nk by a component edge with tag A. Notethat relationships which are involved in aggregations have to be processed�rst because they will establish portions of a subsequent path.The ER diagram in Figure 5 can be translated to the semi-structured schemagraph in Figure 4 as follows. The entity types Student, Course and Tutor becomeentity nodes #1, #3, #7 respectively. The attributes also become nodes and areconnected to their owner entity type by component edges. We need to processthe relationship Enrol before SCT because Enrol is involved in an aggregation.Suppose we choose to construct the path � Student; Course � from the partici-pating entity types of Enrol, then the relationship set Enrol becomes a referencenode #3', and the entity node #1 has a component edge to #3', which in turnhas a referencing edge to the entity type #3. The attribute Grade is a componentof the reference node #3'. The relationship set SCT also becomes a referencenode #7'. The path corresponding to SCT must be � Student; Course; Tutor �because Enrol is an aggregate in the relationship set SCT and it has earlier estab-lished the � Student; Course � portion of the path. Node #3' has a componentedge to #7' which in turn has a referencing edge to #7. The attribute Feedbackis a component of the reference node #7'. We observe that the semi-structuredschema graph obtained is not unique but is dependent on the path constructed.5 ConclusionIn this paper, we have shown the importance of designing good semi-structureddatabases. We de�ned a semi-structured schema graph called S3-graph for semi-structured databases. We identi�ed various anomalies, including rewriting anomaly,deletion anomaly and set anomaly, that may arise if a semi-structured databaseis not designed properly and contains redundancies. We proposed a normal formfor semi-structured schema graph, S3-NF. We present two approaches to designgood semi-structured databases, namely, the restructuring approach and the ERapproach. The former uses the decomposition technique to normalize a semi-structured schema graph which may not guarantee a good solution while thelatter uses the normal form ER model to obtain a normal form semi-structuredschema graph. Our de�nition of the semi-structured schema graph attempts tocorrespond to the XML de�nition so that we can apply our technique to designgood XML databases in future.

References1. S. Abiteboul, D. Quass, J. Widom, and J. Wiener. The lorel query language forsemistructured data. International Journal on Digital Libraries, 1(1), 1997.2. P.A. Bernstein. Synthesizing third normal form relations form functional depen-dencies. ACM Transactions on Database Systems, 4(1):277{298, 1976.3. T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language (xml)1.0. W3C Recommendation available at http://www.w3.org/TR/1998, 1998.4. P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure tosemistructured data. In Int. Conference on Database Theory, 1997.5. P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language andoptimization technique for unstructured data. In Proc. ACM SIGMOD, 1996.6. E.F. Codd. Further normalization of the database relational model. DatabaseSystems, edited by Randell Rustin, 1972.7. M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a web-sitemanagement system. SIGMOD Record, 26(3), 1997.8. R. Goldman and J. Widom. Dataguides: Enabling query formulation and opti-mization in semistructured databases. In Proc. of the 23rd VLDB, 1997.9. T.W. Ling. A normal form for entity-relationship diagrams. In Proc. of 4th Int.Conference on Entity-Relationship Approach, pages 24{35, 1985.10. T.W. Ling. A normal form for sets of not-necessarily normalized relations. InProc. of 22nd Hawaii Int. Conference on Systems Science, pages 578{586, 1989.11. T.W. Ling, F.W. Tompa, and T. Kameda. An improved third normal form forrelational databases. ACM Transactions on Database Systems, 2(6):329{346, 1981.12. T.W. Ling and L.L. Yan. Nf-nr: A practical normal form for nested relations.Journal of Systems Integration, 4:309{340, 1994.13. D. Maier. Theory of relational databases. Pitman, 1983.14. A. Makinouchi. A consideration on normal form of not-necessarily normalizedrelation in the relational data model. In Proc. of 3rd VLDB, 1977.15. J. McHugh, S. Abiteboul, R. Goldman, and J. Widom. Lore: A database manage-ment system for semistructured data. SIGMOD Record, 26(3), 1997.16. S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Objects: Concise represen-tation of semistructured hierarchical data. In Proc. of the 13th Int. Conference onData Engineering, 1997.17. Z.M. Ozsoyoglu and L.Y. Yuan. A normal form for nested relations. ACM Trans-actions on Database Systems, 1(12):111{136, 1987.18. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange acrossheterogeneous information sources. In IEEE International Conference on DataEngineering, pages 251{260, 1995.19. M.A. Roth and H.F. Korth. The design of 1nf relational databases into nestednormal form. In Proc. of ACM SIGMOD, 1987.20. J.D. Ullman. Principles of database systems. Computer Science Press, 1983.21. K. Wang and H.Q. Liu. Schema discovery from semistructured data. In Int.Conference on Knowledge Discovery and Data Mining, 1997.This article was processed using the LATEX macro package with LLNCS style

